首页,华丰国际,平台〖注册登录〗页面!
首页,华丰国际,平台〖注册登录〗页面!
全站搜索
资讯详情
华丰国际圆柱与圆锥的资料
作者:华丰国际 来源于:首页,华丰国际,平台〖注册登录〗页面!    发布于:2019-02-27 16:13   文字:【】【】【

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  1、 以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder),即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱。其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线;G旋转形成的两个圆叫做圆柱的底面,DD旋转形成的曲面叫做圆柱的侧面。 2、 在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转一周时,这条动线所成的面叫做旋转面,这条定直线叫做旋转面的轴,这条动线叫做旋转面的母线。如果母线是和轴平行的一条直线,那么所生成的旋转面叫做圆柱面。如果用垂直于轴的两个平面去截圆柱面,华丰国际那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆柱。

  直圆柱也叫正圆柱、圆柱,可以看成是以矩形的一边所在直线为轴、其余各边绕轴旋转而成的曲面所围成的几何体。

  圆柱体表面的面积,叫做这个圆柱的表面积. 圆柱的表面积=2×底面积+侧面积 圆柱的侧面沿高展开以后是一个正方形或长方形,侧面展开以后的长是底面周长,宽是高,所以侧面积=底面周长×高。 圆柱有两个面是一个大小相同的圆,圆锥只有底面是一个圆。两个底面之间的距离叫做圆柱的高。圆柱有无数条高,且高的长度都相等。圆锥只有一条高。圆柱和圆锥有一面是曲面。

  圆柱所占空间的大小,叫做这个圆柱体的体积. 求圆柱的体积跟求长方体、正方体一样,都是底面积×高:设一个圆柱底面半径为r,高为h,则体积V:V=πr^2h 如S为底面积,高为h,体积为V:V=Sh

  圆柱的两个圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面之间的距离叫做高(高有无数条)。 特征: 圆柱的底面都是圆,并且大小一样。

  与圆柱等底等高的圆锥体积是圆柱体积的三分之一。 体积和高相等的圆锥与圆柱(等底等高)之间,圆锥的底面积是圆柱的三倍。 体积和底面积相等的圆锥与圆柱(等底等高)之间,圆锥的高是圆柱的三倍。 底面积和高不相等的圆柱圆锥不相等。

  圆锥,数学领域术语,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。立体几何定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。该直角边叫圆锥的轴 。

  一个圆锥所占空间的大小,叫做这个圆锥的体积. 一个圆锥的体积等于与它等底等高的圆柱的体积的1/3 根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式: 圆锥

  圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成。(如右图)

  在绘制指定圆锥的展开图时,一般知道a(母线长)和d(底面直径) ∵弧AB=⊙O的周长 ∴弧AB=πd ∵弧AB=2πa(∠1/360°) ∴2πa(∠1/360°)=πd ∴2a(∠1/360°)=d 将a,d带入2a(∠1/360°)=d得到∠1的值。这样绘制展开图的所有所需数据都求出来了。根据数据即可画出圆锥的展开图。

  圆锥的侧面积=1/2×母线长×圆锥底面的周长=π×圆锥底面半径×母线长。 圆锥侧面展开图

  圆锥的表面积=底面积+侧面积 S=πr^2+πra (注a=母线h 圆锥的高=根号下“母线”

  圆锥的高: 圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高; 圆锥的侧面积: 将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长. 圆锥的侧面积就是弧长为圆锥底面的周长*母线;没展开时是一个曲面。 圆锥的母线: 圆锥的侧面展开形成的扇形的半径、底面圆周上点到顶点的距离。 圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且侧面展开图是扇形。 圆锥侧面展开是一个扇形,已知扇形面积为1/2rl。所以圆锥侧面积为1/2母线长×弧长(即底面周长)。

  圆锥三视图是观测者从三个不同位置观察而画出的图形。 其主视图和侧视图均为等腰三角形,俯视图是一个圆和圆心。

相关推荐
  • 首页…玛雅之星注册…首页
  • 首页=迷彩娱乐注册=首页
  • 首页、迷彩娱乐、首页
  • 久洲娱乐手机APP
  • 宏海国际唯一注册登录!【官网】
  • 恩佐娱乐,恩佐官网注册
  • 华谊-「注册首选」
  • 星海娱乐_首页-百度网页
  • 宏海国际有可以玩分分彩么
  • 天门山国际有没有龙虎玩法
  • 脚注信息
    版权所有 Copyright(C)2009-2018 华丰国际钓具有限公司  XML地图 HTML地图 txt地图
    友情链接: